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The transition probabilities and the lifetimes have been calcu- long, it is considered that modulation of the spin energy
lated for the levels arising from magnetic exchange coupling in arises from solvent bombardment or molecular rotation (8–
the following electron spin pairs: SA Å 1

2– SB Å 1
2; SA Å 1

2– SB Å 1; 13) . In the former case electron relaxation is not magnetic
SA Å 1

2– SB Å 3
2; SA Å 1– SB Å 1. Such transition probabilities and field dependent for the accessible fields, whereas it is in

lifetimes have been expressed as a function of the relaxation prop- the latter. The different behavior essentially depends on the
erties of the uncoupled spins in the assumption that magnetic availability of low lying excited states (4) . Along these
coupling does not provide further relaxation pathways, and that

lines, NMR spectroscopists can predict and understand nu-the coupling frequency is large with respect to the electron relax-
clear relaxation.ation rates of both spins. From the above values, nuclear relaxation

Electron relaxation in dimetallic systems experiencingas a function of the intensity of the external magnetic field has
magnetic exchange coupling has been far less studied. Bybeen calculated for nuclei dipole-coupled with either electron spin.
referring to the electron correlation time, or to an averageThe calculated nuclear relaxation dispersion has been then ana-

lyzed in terms of an ‘‘effective’’ electron relaxation time, the value when S ú 1, two limiting cases can be examined. The
knowledge of which is important for NMR of magnetic coupled case of weak magnetic exchange coupling in heterodimetal-
systems. The calculations provide a basis for understanding elec- lic systems (i.e., the coupling energy is much smaller than
tron relaxation in magnetic-coupled dimers. Comparison with the electron relaxation rate of the fast relaxing metal ion) has
available experimental literature data is presented. q 1998 Academic been treated as resulting in an additional electronic relaxation
Press mechanism for the slow relaxing metal ion caused by the

coupling to the fast relaxing metal ion, and accounted for
by using perturbation theory (14–16) . The fast relaxing

INTRODUCTION metal ion was considered to be unaffected by the coupling
(4, 17, 18) . When magnetic exchange coupling is strong

Electronic relaxation in general, and at room temperature
(i.e., the coupling energy is much larger than the electron

in particular, is a subtle matter which is understood only in
relaxation rate of the fast relaxing metal ion) it had always

principle. Monometallic systems in solution have been stud-
been intuitively assumed that the electron relaxation rates

ied either through EPR (1–3) or, more often, through 1H
of the two metal ions are the same and equal to the fast

NMR in an extended range of magnetic fields (4) . In the
relaxing metal ion. We are now going to calculate the level

former case the transition linewidth and a rough estimate of
lifetimes and total transition linewidths in some strongly

the lifetime of the spin levels can be obtained. In the latter,
coupled systems in terms of the relaxation times in the iso-

an electron correlation time is obtained. The latter, in the
lated ions. Then we calculate the nuclear relaxation of a

case of Sú 1, is a kind of average of different time constants
nucleus sensing either metal ion at various magnetic fields

of a multiexponential process, but is still meaningful for
and, from this, longitudinal (t1) and transverse (t2) effective

NMR spectroscopists since the value allows the discussion
electron correlation times for nuclear relaxation. The latter

of nuclear relaxation as related to the particular metal ion
are the parameters of interest here.

(5) . When the electron relaxation times are short, solid state
The approach is that of evaluating the transition probabili-

mechanisms like either Raman (6) or Orbach (7) are consid-
ties between pairs of MS = levels of the S* manifolds which

ered to be operative (5) . In contrast, when such times are
originate from magnetic coupling, and their adiabatic line-
widths (19) . The overall electron relaxation turns out to
display a multiexponential behavior which is analogous to1 To whom correspondence should be addressed.
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34 BERTINI ET AL.

that already encountered in S ú 1 single-spin systems (9) . (4) The exchange coupling energy is much larger than
the difference in the Zeeman energies. There is no theoreticalFinally, the appropriate nuclear relaxation rate equations are

calculated as a function of the external magnetic field, by requirement for this condition. However, as ÉJÉ @ Zeeman
in most cases of interest, we limit ourselves to this case,using the simple Kubo and Tomita formalism for an elec-

tron–nuclear dipolar coupling (14, 17, 20) . The calculated also because the ÉJÉ ! Zeeman situation would yield results
very similar to the uncoupled system.nuclear relaxation profiles can be fitted by assuming that the

profiles are originated by a single electronic transition with
J can be either positive or negative, and its absolute valueeffective electron correlation times t1 and t2 .

can be smaller or larger than thermal energy, kT , but shouldThis research is of importance to magnetic resonance re-
be specified.searchers in that ( i) it provides a theoretical explanation of

electron relaxation in the presence of magnetic exchange
Calculation of Lifetimes and Transition Probabilitiescoupling, and (ii) it explains in a semiquantitative way why

high resolution NMR can be performed on radicals and cop- We have considered in the present work the simplest case
per(II) compounds in the presence of magnetic coupling when the interactions of stochastic external fields with indi-
with fast relaxing metal ions like nickel(II) and cobalt(II) . vidual spins are isotropic. Thus, the time-dependent Hamil-

tonian for the interaction between the fluctuating fields and
THEORETICAL PART coupled spins can be written as (19)

The calculations have been performed under the condi- H( t) Å 01/2ge[SA/HA/( t) / SA0HA0( t)
tions that:

/ 2SAzHAz( t) / SB/HB/( t)
(1) The dimeric system can be described by the Hamilto-

nian / SB0HB0( t) / 2SBzHBz( t)] , [4]

H Å gAmeSArB0 / gBmeSBrB0 / JSArSB, [1] where designations /, 0, and z are used to distinguish the
spherical components of spin operators SA and SB and ran-

where the first two terms are the Zeeman terms for the two dom field operators HA( t) and HB( t) . Our assumption about
ions and the last describes an isotropic exchange coupling isotropic interaction also includes the conditions
interaction between the spin of metal A and that of metal B,
SA and SB respectively. J is the isotropic coupling constant. (H 2

Az)av Å 1/2(H 2
A/)av Å 1/2(H 2

A0)av Å 1/3(ÉHAÉ
2)av

(2) The coupling frequency between spins is large in
(H 2

Bz)av Å 1/2(H 2
B/)av Å 1/2(H 2

B0)av Å 1/3(ÉHBÉ
2)av .absolute value compared to the electronic relaxation rates

but small compared to the modulation of the electron lattice [5]
interaction

It follows (19) that cross terms like (HA(B)qHA(B)p)av and
ÉJÉ/\ @ t01

sA , t01
sB [2]

(HAqHBp)av will vanish if p x q . When the fluctuating fields
ÉJÉ/\ ! t01

vA , t01
vB , [3] are not correlated we will also have (HAqHBq)av Å 0.

We aim at obtaining the electron relaxation rates in the
where t01

sA Å RA and t01
sB Å RB are the electron relaxation coupled systems as a combination of relaxation rates of un-

rates of uncoupled spins SA and SB respectively, and tvA , coupled spins. At this point it is convenient to introduce the
tvB are the corresponding correlation times for electron re- following definitions of the latter (19) :
laxation. The last condition practically means extreme nar-
rowing limit for electron relaxation. This is often the condi- t01

A Å 2/3g 2
etv(ÉHAÉ

2)av
tion encountered for fast relaxing metal ions, which are those

and t01
B Å 2/3g 2

etv(ÉHBÉ
2)av . [6]of interest to NMR spectroscopists.

(3) It is further assumed that each electron spin relaxes
with its own mechanisms independently of the occurrence Only one tv is used in (6) because this parameter is covariant

with HA and HB.of spin coupling. This is a key assumption, but it is reason-
able within the frame of magnetic exchange coupling being The eigenfunctions of the static Hamiltonian [1] allow

us to calculate the matrix elements of the time-dependenta perturbation of the overall electronic structure of the un-
coupled spin system. Finally, we assumed that the stochastic Hamiltonian [4] between the ÉS *MS* … of the coupled system.

Then transition probabilities can be calculated by the formulaexternal fields causing relaxation of the individual ions do
not appreciably correlate between themselves. (19)
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35RELAXATION IN MAGNETIC EXCHANGE COUPLED DIMERS

The real part of the integral in [11] is equal to the familiarWij Å 2tv([ » iÉH( t)É j …]2)av for i x j . [7]
spectral density

The sum of transition probabilities from level i to all other
levels gives the inverse lifetime of level i (t01

ii ). The Wij and te

1 / (vij { vI)
2t 2

e

. [12]t01
ii values (the latter taken with opposite sign as customary)

are reported as supplementary material (Tables S1A–S4A) for
the 1

2–1
2,

1
2–1, 1

2–3
2, and 1–1 cases, respectively.

If the static Hamiltonian is given by [1] only the followingThen the adiabatic linewidths for each i r j transition can
products of expectation values will be different from zerobe calculated according to the formula (21)

» iÉS/(0)É j … » iÉS0( t)É j … [13](t ad )01
ij Å tv([ » iÉH( t)Éi … 0 » jÉH( t)É j …]2)av . [8]

» iÉS0(0)É j … » iÉS/( t)É j … [14]
The corresponding values are also reported as supplementary

» iÉSz(0)É j … » iÉSz( t)É j … [15]material (Tables S1B–S4B). Finally, the total linewidth for
each i r j transition is calculated by making use of the
relationship Relaxation of the components S/ and S0 occurs in the plane

perpendicular to the direction of the static magnetic field.
(t)01

ij Å (t ad )01
ij / 1/2(t01

ii / t01
j j ) [9] Therefore, for the spectral density terms originating from

[13] or [14] the te coefficients should be given by the corre-
The t01

ij values are reported in supplementary material (Ta- sponding (t2)ij . For the terms originating from [15] two
bles S1C–S4C). cases can be considered with respect to te . When i Å j , then

vij Å 0 and te coincides with the lifetime of level i , tii .
Calculation of Paramagnetic Nuclear Relaxation When i x j , at variance with a monometallic system, the

Enhancements expectation value » iÉSz(0)É j … can be different from zero.
This occurs for the transitions between levels with the sameTo derive the equations for the field dependence of the
MS* originating from different S * multiplets. In such casenuclear relaxation rates enhancements, according to the
the (t2)ij of the transition should be used as the correlationKubo and Tomita treatment (14) , we must evaluate expres-
time. The distinction between the above two cases, however,sions of the type
is irrelevant when J @ Zeeman, as all terms involving transi-
tions between J-split levels will be dispersed.F*

`

0

f (r , q, w) » iÉSp( t)É j … » jÉSq( t)Éi …e{vItdtG
sp av

, [10] In summary, in the equations for nuclear relaxation rate
enhancements all terms related to transitions within the same
S* multiplet will have the corresponding (t2)ij as a correla-

where f (r , q, w) is a function which describes the position
tion time. All the so-called vI terms will contain as a correla-

of the proton in the laboratory coordinate frame, vI is the
tion time the lifetime of the corresponding level, tii . The

nucleus Larmor frequency, p and q stand for /, z , and 0
level to be considered is identified by the indexes of the

and i and j are eigenstates of Hamiltonian [1] (20) . As the
zero-valued frequency vii .static Hamiltonian [1] is isotropic, the eigenfrequencies of

the electron spin system do not depend on the orienta-
RESULTStion of the molecule. In this case a spherical average of

f (r , q, w) can be taken. The result depends only on the
Table 1 collects the total linewidths (t01

ij ) and inversecomponents of the spherical spin operator tensor. The
level lifetimes (t01

ii ) for the coupled SA–SB systems 1
2–1

2,
1
2expression » iÉSq( t)É j … can be taken to be equal to

–1, 1
2–3

2, and 1–1, calculated as described under Theoretical» iÉSq(0)É j …e( ivij01/te) t , where vij is the eigenfrequency of
Hamiltonian [1] (22–24) . Omitting constants and before the Part.
spatial average in (10) can be performed, we must evaluate Because of the same assumptions about fluctuating fields,
terms of the type the results for the spins SA Å 1

2 and SB Å 1
2 coincide with

those of Freeman et al. (19) for two coupled nuclear spins
when external fields are not correlated. For all spin pairs,

» iÉSp(0)É j … » jÉSq(0)Éi … *
`

0

e i (vij{vI) t0 ( t /te)dt , [11]
the lifetimes of the levels and linewidths of transitions are
expressed as linear combinations of the relaxation rates of
uncoupled spins.where te is the electronic relaxation time, taken as the domi-

nant correlation time for the electron–nucleus interaction. The t01
ij and t01

ii values of Table 1 constitute the full set
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36 BERTINI ET AL.

TABLE 1
Inverse Level Lifetimes, t01

ii (Diagonal), and Total Transition Linewidths, t01
ij (Off-Diagonal),

in Some Magnetic Exchange Coupled Systems

SA Å
1
2, SB Å

1
2

C1(4) C2(3)

C1(4) 1/2RA / 1/2RB 3/4RA / 3/4RB

C2(3) 3/4RA / 3/4RB 3/4RA / 3/4RB

C3(2) 3/4RA / 3/4RB 3/4RA / 3/4RB

C4(1) RA / RB 3/4RA / 3/4RB

SA Å
1
2, SB Å 1

C1(6) C2(5) C3(4)

C1(6) 1/2RA /RB 2/3RA / 5/3RB 5/6RA / 4/3RB

C2(5) 2/3RA / 5/3RB 13/18RA / 17/9RB 7/9RA / 16/9RB

C3(4) 5/6RA / 4/3RB 7/9RA / 16/9RB 13/18RA / 14/9RB

C4(3) 2/3RA / 8/3RB 13/18RA / 14/9RB 7/9RA / 7/3RB

C5(2) 5/6RA / 7/3RB 7/9RA / 19/9RB 13/18RA / 20/9RB

C6(1) RA / 3RB 5/6RA / 7/3RB 2/3RA / 8/3RB

SA Å
1
2, SB Å

3
2

C1(8) C2(7) C3(6) C4(5)

C1(8) 1/2RA / 3/2RB 5/8RA / 21/8RB 7/8RA / 57/32RB 3/4RA / 15/4RB

C2(7) 5/8RA / 21/8RB 11/16RA / 51/16RB 13/16RA / 87/32RB 9/8RA / 15/4RB

C3(6) 7/8RA / 57/32RB 13/16RA / 87/32RB 11/16RA / 2RB 3/4RA / 117/32RB

C4(5) 3/4RA / 15/4RB 9/8RA / 15/4RB 3/4RA / 117/32RB 3/4RA / 15/4RB

C5(4) 3/4RA / 15/4RB 9/8RA / 15/4RB 3/4RA / 117/32RB 3/4RA / 15/4RB

C6(3) 5/8RA / 177/32RB 11/16RA / 147/32RB 13/16RA / 41/16RB 3/4RA / 117/32RB

C7(2) 7/8RA / 39/8RB 13/16RA / 69/16RB 11/16RA / 147/32RB 9/8RA / 15/4RB

C8(1) RA / 6RB 7/8RA / 39/8RB 5/8RA / 177/32RB 3/4RA / 15/4RB

SA Å 1, SB Å 1

C1(9) C2(8) C3(7) C4(6) C5

C1(9) RA /RB 3/2RA / 3/2RB 3/2RA / 3/2RB 15/8RA / 15/8RB 2RA / 2RB

C2(8) 3/2RA / 3/2RB 7/4RA / 7/4RB 7/4RA / 7/4RB 15/8RA / 15/8RB 2RA / 2RB

C3(7) 3/2RA / 3/2RB 7/4RA / 7/4RB 7/4RA / 7/4RB 15/8RA / 15/8RB 2RA / 2RB

C4(6) 15/8RA / 15/8RB 15/8RA / 15/8RB 15/8RA / 15/8RB 7/4RA / 7/4RB 15/8RA / 15/8RB

C5 2RA / 2RB 2RA / 2RB 2RA / 2RB 15/8RA / 15/8RB 2RA / 2RB

C6(4) 15/8RA / 15/8RB 15/8RA / 15/8RB 15/8RA / 15/8RB 7/4RA / 7/4RB 15/8RA / 15/8RB

C7(3) 5/2RA / 5/2RB 9/4RA / 9/4RB 9/4RA / 9/4RB 15/8RA / 15/8RB 2RA / 2RB

C8(2) 5/2RA / 5/2RB 9/4RA / 9/4RB 9/4RA / 9/4RB 15/8RA / 15/8RB 2RA / 2RB

C9(1) 3RA / 3RB 5/2RA / 5/2RB 5/2RA / 5/2RB 15/8RA / 15/8RB 2RA / 2RB

of correlation times needed in the nuclear relaxation equa- H Å gemeSrB0 [16]
tions for the coupled systems developed below.

are given by the well-known Solomon equation (25) . ForWe now examine the expected NMR properties of dimet-
the case of electron relaxation being the dominant correlationallic systems experiencing isotropic exchange coupling as
time, the equation isdescribed by Hamiltonian [1] for SA Å 1

2 and SB Å 1
2, 1, and

3
2. The SA Å 1– SB Å 1 case is also examined.

T01
1M(A) Å 2

15
kASA(SA / 1)The nuclear relaxation enhancements caused by dipolar

coupling to an isolated electron spin multiplet, for instance
SA, when the latter is adequately described by the electronic 1 S3

t1

1 / v 2
I t

2
1

/ 7
t2

1 / v 2
St

2
2
D , [17]

Zeeman Hamiltonian
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37RELAXATION IN MAGNETIC EXCHANGE COUPLED DIMERS

The equations for the various cases, calculated as described
under Theoretical Part, are reported in the Appendix (Eqs.
[A1] – [A6]) . The 2

15 coefficient in front of all equations is
the same coefficient appearing in Eq. [17], so that the sum
of the F-containing terms, multiplied by a further coefficient,
can be directly compared with the sum of the spectral densi-
ties appearing in parentheses in Eq. [17].

Equations [A1] – [A6], with the correlation times re-
ported in Table 1, can be used to calculate NMRD profiles.
Prediction of the latter without a theoretical treatment like
the present one appears to be not a trivial task, as the NMRD
profiles turn out to depend on (i) the relative values of the
electronic relaxation rates of metals A and B when isolated,
RA and RB; ( ii ) the identity of the metal (A or B) with
which the nucleus predominantly interacts; ( iii ) the relative
magnitude of ÉJÉ and the thermal energy, kT ; and (iv) the
nature (ferro- or antiferro-) of the magnetic coupling be-
tween the two metals, in the case of ÉJÉ @ kT .

Figure 2 shows the calculated NMRD profiles for all cases
considered here. With the obvious exception of the 1

2–1
2 and

1–1 cases, for which a strong antiferromagnetic coupling
(J @ kT ) yields a diamagnetic system, three situations are

FIG. 1. Electronic spin energy levels for the dimetallic systems 1
2–1

2,
1
2 considered: the high temperature (HT) limit and the ÉJÉ @

–1, 1
2–3

2, and 1–1.
kT limits for both J ú 0 (AF) and J õ 0 (F). The figure
thus consists of two panels each for the 1

2–1
2 and 1–1 cases

and six panels each for the 1
2–1 and 1

2–3
2 cases. In fact, the

latter two cases involve SA x SB, and two sets of calculationswhere the term in parentheses is the sum of two spectral
have been performed for the nucleus, N, interacting withdensities, with t1 equal to the time constant for the relaxation
either one of the two spins. In each panel, three profilesof the Sz component and t2 that of the S/ and S0 components

(21) . k is given by calculated with the appropriate equations are shown. In all
cases and without loss of generality, the spin interacting with
the nucleus was assumed to have an electronic relaxation

kA Å S m0

4pD
2 g 2

I g 2
em

2
e

r 6
A

, [18]
rate R Å 109 s01 . The full line refers to the case of the
second spin having a relaxation rate of 108 s01 , the dotted
line to the case of the second spin having the same relaxationwhere m0 is the permeability of vacuum, gI is the nuclear
rate as the first spin (109 s01) , and the dashed line to themagnetogyric ratio, ge is the electron g factor, me is the
case of the second spin having a relaxation rate five timesBohr magneton, and rA is the nucleus–electron distance.
faster than the first spin (5 1 109 s01) . For convenience,Analogous equations have been derived when the static elec-
the NMRD profiles are reported as spectral densities, nor-tronic Hamiltonian contains zero field splitting, g anisotropy,
malized by division by the S(S / 1) value of the spinand hyperfine coupling with the metal nucleus spin
interacting with the nucleus. In this way, an uncoupled spin(17, 20, 26, 27) . The approach can be that described by
would give the usual low field reference value of 10 and aKubo and Tomita (14) or by Redfield (16) . Using the same
spectral density of 3 at field values intermediate between theapproaches, the effect of Hamiltonian [1] can be also intro-
vSt and the vIt dispersions (Solomon equation, Eq. [17]duced. An equation for the SA Å 1

2 and SB Å 1
2 case has been

with t1 Å t2 Å t) .already reported (17) .
It appears that in all cases the profiles at low field are lowerThe electronic spin levels for the dimetallic systems con-

than the Solomon profiles. This depends on the reducedsidered here and described by Hamiltonian [1] are sketched
availability of electronic transitions for nuclear relaxation, asin Fig. 1. In the following, electronic spin levels and transi-
the transitions involving J-split levels are dispersed. Anothertions will be labeled according to Fig. 1.
general feature is the higher NMRD profile in the J õ 0The contribution to the enhancement given by each metal
(F) case with respect to the J ú 0 (AF) case, with theion in the pair is calculated separately. If the nucleus interacts

with both metal ions the total effect is the sum of the effects. high temperature limit profile being intermediate. This is
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39RELAXATION IN MAGNETIC EXCHANGE COUPLED DIMERS

accounted for intuitively by the larger paramagnetism of the a single electron spin system characterized by a single longi-
ground state in the former case. tudinal (t1) and transverse (t2) electron relaxation time.

The dependence of the NMRD intensity, for a nucleus Indeed, each t01
1 and t01

2 value of Table 2 is independent
interacting with one spin, on the electronic relaxation rate of whether the nucleus senses metal A or metal B, since
of the other spin is not the same for the various cases. In such average values characterize the coupled system as a
general, the effect is less pronounced when the spin inter- whole, as a result of condition [2] . In other words, the two
acting with the nucleus is the larger of the two, and more metal ions have the same average relaxation time. Further-
pronounced when it is the smaller. The cases of equal spins more, when RA and RB differ by an order of magnitude or
are intermediate. more, the average value is closer to the larger rather than to

A most striking feature, however, is the variability of the the smaller R value.
ratio of the low field to the intermediate field plateaus. Such When RA à RB , and SA Å SB Å 1

2, the average t01
1 and

ratio is 10/3 in the Solomon case, and would be 10/3 in t01
2 values are, respectively, equal to, and 50% larger than,

the present cases if the tij and tii values were equal. Our the value of the uncoupled system. For SA Å SB Å 1, both
calculations of the individual tij and tii values show that t01

1 and t01
2 become larger than that of the uncoupled

these values may differ one from another, depending also system.
on the relative values of RA and RB. For different spins, the relaxation rate of the smaller spin

Furthermore, the two dispersions are (i) not strictly Lo- is multiplied by a factor between 0.5 and 1, and that of the
rentzian, as they are made up of sums of Lorentzians with larger by a factor between 1 and 4. The factors multiplying
different t values, and (ii) not spaced in frequency by the RA and RB for the calculation of t01

1 are in any case smaller
vS /vI ratio, as in the Solomon case when t1 Å t2 (Eq. than the corresponding factors for the calculation of t01

2 . In
[17]) . However, inspection of the relevant values in Table all cases, the small spin contributes to the average t01

1 and
1 shows that the tij values never differ from one another by t01

2 values less than the large spin.
more than a factor of 4, and the same is true for the tii Figure 3 shows in graphical form how much the effective
values. Under these conditions, it is well known that a sum t1 and t2 values in the coupled systems differ from the RA
of Lorentzians is well approximated by a single Lorentzian and RB values in a variety of circumstances. In all cases, it
having a reciprocal t value equal to the weighted average is assumed that the electron relaxation rate of one spin (RBof the individual reciprocal t values. or RA) is 109 s01 , and the electron relaxation rate of the

The average effective t values calculated for the low field other spin (RA or RB) varies from 107 to 1012 s01 . The six
and high field dispersions (t2 and t1 , respectively) from the panels refer to all the different possibilities for a nucleus to
individual tij and tii values, respectively, are shown in Table interact with one of the spin pairs 1

2–1
2,

1
2–1, 1

2–3
2, 1–1. The

2. Practically identical values are obtained by actually fitting
full lines are calculated in the HT limit, the dotted and dashed

the calculated profiles of Fig. 2 using two effective t values
lines in the AF and F limits, respectively. The t01 Å 109

and an effective Solomon equation equal to Eq. [17] but
s01 and t01 Å RA (RB) lines are also shown.multiplied by a further CA coefficient. The CA values ob-

As already noted, when the R values differ much fromtained from the fit are also very close to the values of 1
2, one another, the effective t01

1 and t01
2 values are relatively11

27,
3
8, and 1

2 appearing in Eqs. [A1] – [A6] in the cases 1
2–1

2, close to the larger R . However, the detailed behavior is1
2–1, 1

2–3
2, and 1–1, respectively, when the nucleus is inter-

different. For instance, in the 1–1 case t01
2 and t01

1 are
acting with spin A, in the HT limit. Likewise, CB coefficients

always larger than the larger R , while in the 1
2–1

2 case the
very close to the 1

2,
7
9,

7
8, and 1

2 values of Eqs. [A1] – [A6] are
opposite is true, except when RA and RB are equal or similarobtained when the nucleus is interacting with spin B. Analo-
within a factor 3. In the cases of unequal spins, with sizablygously, the fits in the AF and F low temperature limits yield
different R values, when the larger R value is associatedCA and CB coefficients very close to those that can be calcu-
with the ion with larger S , t01 is sizably larger than thelated from Eqs. [A1] – [A6] in the same limits.
larger value. On the contrary, if the larger R value is associ-
ated with the ion with smaller S , t01 is close to, but slightlyDISCUSSION
smaller than, R .

In summary, Table 2 allows experimentalists to fit NMRDThe main result of this work is that nuclear relaxation in
coupled systems can always be treated as originating from data of coupled systems by using the RA and RB values of

FIG. 2. NMRD profiles (spectral densities, normalized to 10 for the Solomon case, as a function of the proton Larmor frequency) for the 1
2–1

2,
1
2–1,

1
2–3

2, and 1–1 systems. In each system, the HT, F, and AF limits are considered (see text) for RB õ RA (RB Å 108 s01 , solid line) , RB Å RA (RB Å 109

s01 , dotted line) , and RB ú RA (RB Å 5 1 109 s01 , dashed line) . Calculations are performed for the nucleus, N, interacting with either one of the two
spins.
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TABLE 2

Effective Electron Relaxation Rates for J-Coupled Systems (1
2–1

2; 1
2–1; 1

2–3
2; and 1–1) in the HT, AT, and F Limitsa

N–SA N–SB

HT AF F HT AF F

SA Å
1
2, SB Å

1
2

t01
1 1/2RA / 1/2RB Diamagnetic state 1/2RA / 1/2RB 1/2RA / 1/2RB Diamagnetic state 1/2RA / 1/2RB

t01
2 3/4RA / 3/4RB 3/4RA / 3/4RB 3/4RA / 3/4RB 3/4RA / 3/4RB

SA Å
1
2, SB Å 1

t01
1 107/198RA / 112/99RB 13/18RA / 14/9RB 47/90RA / 49/45RB 73/126RA / 77/63RB 13/18RA / 14/9RB 47/90RA / 49/45RB

t01
2 71/99RA / 187/99RB 7/9RA / 7/3RB 32/45RA / 83/45RB 46/63RA / 125/63RB 7/9RA / 7/3RB 32/45RA / 83/45RB

SA Å
1
2, SB Å

3
2

t01
1 9/16RA / 179/96RB 11/16RA / 2RB 43/80RA / 147/80RB 331/560RA / 2123/1120RB 11/16RA / 2RB 43/80RA / 147/80RB

t01
2 43/48RA / 215/64RB 3/4RA / 117/32RB 37/40RA / 33/10RB 69/80RA / 7677/2240RB 3/4RA / 117/32RB 37/40RA / 33/10RB

SA Å 1, SB Å 1

t01
1 5/4RA / 5/4RB Diamagnetic state 23/20RA / 23/20RB 5/4RA / 5/4RB Diamagnetic state 23/20RA / 23/20RB

t01
2 7/4RA / 7/4RB 69/40RA / 69/40RB 7/4RA / 7/4RB 69/40RA / 69/40RB

a Calculations are performed for the nucleus, N, interacting with either one of the two spins.

the uncoupled systems as the only unknowns. Of course, tween the unpaired electron on copper and the copper I Å
3
2 nucleus. However, it is well known that in other copper(II)this only holds in the starting assumption that no additional

relaxation mechanisms are operative in the coupled systems. dimers the EPR linewidths are larger than in the correspond-
t01

1 and t01
2 larger than predicted should reveal the presence ing uncoupled systems (30) . The present prediction of a

of additional relaxation mechanisms. 50% increase in linewidth is in agreement with these obser-
Experimental data on t1 are available for a copper dimer vations. Finally, in several copper–copper dimers relatively

in Cu2Cu2 superoxide dismutase (28) where J Å 26 cm01 sharp 1H NMR lines are observed (31–34) . It has been
(29) , as well as for the native Cu2Zn2 superoxide dismutase suggested that the such sharp lines arise from a sizable short-
system (28) . Assuming RA Å RB, no change in t1 should ening of the electronic relaxation times of the copper ions
be expected, while a factor two decrease in nuclear relaxation with respect to the uncoupled situation (33, 34) , beyond that
should be observed due to the 1

2 coefficient in Eq. [A1]. The predicted from the present treatment. In these cases, usually
t1 values have been estimated with a modified Solomon characterized by relatively short metal–metal distances,
equation that takes into account the effect of the coupling modulation of ZFS of the dimer S* Å 1 state may be an
of the unpaired electron of copper with the copper I Å 3

2 additional electronic relaxation mechanism (34) .
Experimental data on t1 are also available for the Cu2Co2nucleus (20, 26) , as well as the possible effects of zero field

derivative of superoxide dismutase, which displays a J valuesplitting (ZFS) for S ú 1
2 ions (20, 23) . The t1 values actu-

of 17 cm01 (35) . The NMR data, collected over a range ofally increase from about 3 to 4 ns on passing from the
magnetic fields from 60 to 400 MHz, refer to protein protonsuncoupled to the coupled system, while the best fit value of
sensing either the copper or the cobalt ion (36) . The RCuthe coefficient is 0.57 (28) . Both parameters are thus in
and RCo data obtained on suitable uncoupled derivatives aresubstantially good agreement with the expectations. t2 val-
5 1 108 and 1 1 1011 s01 , respectively (36) . This is thusues cannot be obtained from NMRD measurements in this
a typical case of one ion relaxing much faster than the othercase because the low field inflections of the NMRD profiles

are determined by the value of the hyperfine coupling be- ion. From Table 2, in the high temperature approximation,

FIG. 3. Effective correlation rates for nuclear relaxation, t01
2 and t01

1 , as a function of the electron relaxation rate of one spin, that of the other spin
being equal to 109 s01 . The electron relaxation rate of the spin interacting with the nucleus is labeled RA, while that of the second spin is labeled RB.
Solid, dotted, and dashed lines refer to the HT, AF, and F limits, respectively (see text) . Calculations are performed for the nucleus, N, interacting with
either one of the two spins.
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cases. The labeling of electron spin levels and transitions ist01
1 should be equal to 9

16 RCu / 179
96 RCo , i.e., about twice

shown in Fig. 1. The tij/ (1/ v 2
ijt

2
ij) dispersions correspond-RCo , or 2 1 1011 s01 . The experimental t01

1 value ranges
ing to transitions between electronic levels split by J arebetween 1 and 2 1 1011 s01 depending on whether it is
omitted because they are quenched in the chosen limit ÉJÉ/estimated from the relaxation properties of the protons close
\ @ t01

ij .to the copper or to the cobalt ion. Again, the agreement with
prediction is very good. In particular, the more than two
orders of magnitude decrease in the electron relaxation time SA Å 1

2 and SB Å 1
2

of copper, and even the factor two decrease in the electron
relaxation time of cobalt, are observed as predicted.

T01
1M(A) Å T01

1M(B)
CONCLUDING REMARKS

Å 2
15

kA(B)SA(SA / 1)
The perception that the electronic relaxation times of un-

coupled metal ions change upon magnetic coupling is here
1 1

2
4F1e

0E1 /kT

(S = (2S * / 1)e0ES= /kT , [A1]put on quantitative basis for some idealized cases. The pres-
ence of ZFS has not been taken into consideration because
of the loss of generality, in that information on ZFS rarely
is available. If ZFS parameters are known, then it is easy to where
include them in the calculations within the present frame
(20) . While a perturbative approach was available for weak
coupling (4) , no attempt is available in the literature to F1 Å

3
2

t11

1 / v 2
I t

2
11

/ 3
2

t44

1 / v 2
I t

2
44relate the electronic relaxation times of a single ion with

that of the same ion in a strongly magnetic coupled dimer.
Here we have calculated the transition probabilities between / 7

2
t13

1 / v 2
13t

2
13

/ 7
2

t34

1 / v 2
34t

2
34

,
levels arising from magnetic coupling and the indetermina-
tion of the transitions. Many correlation times are thus ob-
tained, which can be of little help to spectroscopists. Since and ES = refers to the energy of the spin state S *. All four
we are interested particularly in the effects on nuclei which spectral densities in F1 are multiplied by the same exponen-
are coupled with electrons in magnetic coupled systems, we tial, as the individual Zeeman energy contribution can be
have calculated the nuclear relaxation rates at any magnetic neglected in accordance with the condition that the exchange
field. Then, from the latter calculated values we have ex- coupling energy ÉJÉ is much larger than the difference in
tracted a pair of effective electronic correlation times which the Zeeman energies. Note that the nuclear relaxation en-
are the ones NMR spectroscopists want. In this way a simple hancements caused by the two metal ions are identical under
equation similar to the well-known Solomon equation can any condition, even when the two metal ions are markedly
be used for dimetallic systems. different and have very different electronic relaxation times

A final remark is that it is possible that establishing mag- when isolated. This equation reduces to the equation pre-
netic coupling provides further electron relaxation mecha- viously proposed (17) for t13 Å t34 Å t11 Å t44 Å t.
nisms, and that the average t1 and t2 values are much smaller
than those reported in Table 2. However, the consequences

SA Å 1
2 and SB Å 1on nuclear relaxation for nuclei interacting with the A or B

spins, given in Eqs. [A1] – [A6], are still fully valid.

APPENDIX T01
1M(A)Å 2

15
kASA(SA/ 1)

Equations for Nuclear Relaxation in Some Magnetic
1 11

27 F6(FA
1/2e

0E1/2 /kT/ FA
3/2e

0E3/2 /kT)
(S = (2S */ 1)e0ES= /kT G , [A2]Exchange Coupled Systems

The following equations are generally valid under condi-
tions [1] – [4] described under Theoretical Part. In the equa- where
tions, t01

ij represents the total linewidth (in radians per sec-
ond) of the transition between levels i and j in the coupled
system, whereas tii represents the lifetime of level i . The FA

1/2 Å
3
11

t33(44)

1 / v 2
I t

2
33(44)

/ 7
11

t34

1 / v 2
34t

2
34t01

ij and t01
ii values are reported in Table 1 for the various
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and
FA

2 Å 2
t11(88)

1 / v 2
I t

2
11(88)

/ 1
2

t22(77)

1 / v 2
I t

2
22(77)

FA
3/2 Å

27
11

t11(66)

1 / v 2
I t

2
11(66)

/ 3
11

t22(55)

1 / v 2
I t

2
22(55) / 7

6
t87

1 / v 2
87t

2
87

/ 7
6

t21

1 / v 2
21t

2
21

/ 21
11

t12

1 / v 2
12t

2
12

/ 21
11

t56

1 / v 2
56t

2
56 / 7

4
t52

1 / v 2
52t

2
52

/ 7
4

t75

1 / v 2
75t

2
75

/ 28
11

t25

1 / v 2
25t

2
25

.

and

FA
1/2 and FA

3/2 refer to the spectral densities originating from
the S* Å 1

2 or 3
2, respectively. The ground state can be either

the E1/2 or the E3/2 level according to whether Jú 0 (antifer- T01
1M(B) Å 2

15
kBSB(SB / 1)

romagnetic coupling) or J õ 0 (ferromagnetic coupling).

1 7
8 F8(FB

1 e0E1 /kT / FB
2 e0E2 /kT)

(S = (2S * / 1)e0ES= /kT G , [A5]
T01

1M(B)Å 2
15

kBSB(SB/ 1)

where1 7
9 F6(FB

1/2e
0E1/2 /kT/ FB

3/2e
0E3/2 /kT)

(S = (2S */ 1)e0ES= /kT G , [A3]

where FB
1 Å

15
14

t33(66)

1/ v 2
I t

2
33(66)

/ 5
4

t43

1/ v 2
43t

2
43

FB
1/2 Å

6
7

t33(44)

1 / v 2
I t

2
33(44)

/ 2
t34

1 / v 2
34t

2
34

/ 5
4

t64

1/ v 2
64t

2
64

and FB
2 Å

54
35

t11(88)

1/ v 2
I t

2
11(88)

/ 27
70

t22(77)

1/ v 2
I t

2
22(77)

FB
3/2 Å

27
14

t11(66)

1 / v 2
I t

2
11(66)

/ 3
14

t22(55)

1 / v 2
I t

2
22(55)

/ 9
10

t87

1/ v 2
87t

2
87

/ 9
10

t21

1/ v 2
21t

2
21

/ 3
2

t12

1 / v 2
12t

2
12

/ 3
2

t56

1 / v 2
56t

2
56

/ 27
20

t52

1/ v 2
52t

2
52

/ 27
20

t75

1/ v 2
75t

2
75

.

/ 2
t25

1 / v 2
25t

2
25

.
SA Å 1 and SB Å 1

SA Å 1
2 and SB Å 3

2

T01
1M(A)Å T01

1M(B)Å 2
15

kA(B)SA(SA/ 1)
T01

1M(A)Å 2
15

kASA(SA/ 1)

1 1
2 F9(F1e

0E1 /kT/ F2e
0E2 /kT)

(S = (2S */ 1)e0ES= /kT G , [A6]
1 3

8 F8(FA
1 e0E1 /kT/ FA

2 e0E2 /kT)
(S = (2S */ 1)e0ES= /kT G , [A4]

where
where

FA
1 Å

1
2

t33(66)

1 / v 2
I t

2
33(66)

/ 7
12

t43

1 / v 2
43t

2
43

F1 Å
1
2

t22(77)

1 / v 2
I t

2
22(77)

/ 7
12

t62

1 / v 2
62t

2
62

/ 7
12

t76

1 / v 2
76t

2
76

/ 7
12

t64

1 / v 2
64t

2
64
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