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The transition probabilities and the lifetimes have been calcu-
lated for the levels arising from magnetic exchange coupling in
the following electron spin pairs: Sq = 3—Sg = 3; Sa = 3—Sg = 1;
Sa = 3-Sg = 3, Sa = 1-Sg = 1. Such transition probabilities and
lifetimes have been expressed as a function of the relaxation prop-
erties of the uncoupled spins in the assumption that magnetic
coupling does not provide further relaxation pathways, and that
the coupling frequency is large with respect to the electron relax-
ation rates of both spins. From the above values, nuclear relaxation
as a function of the intensity of the external magnetic field has
been calculated for nuclei dipole-coupled with either electron spin.
The calculated nuclear relaxation dispersion has been then ana-
lyzed in terms of an “‘effective” electron relaxation time, the
knowledge of which is important for NMR of magnetic coupled
systems. The calculations provide a basis for understanding elec-
tron relaxation in magnetic-coupled dimers. Comparison with
available experimental literature data is presented. © 1998 Academic

Press

INTRODUCTION

Electronic relaxation in general, and at room temperature
in particular, is a subtle matter which is understood only in
principle. Monometallic systems in solution have been stud-
ied either through EPR (1-3) or, more often, through *H
NMR in an extended range of magnetic fields (4). In the
former case the transition linewidth and a rough estimate of
the lifetime of the spin levels can be obtained. In the latter,
an electron correlation time is obtained. The latter, in the
caseof S> 1, isakind of average of different time constants
of a multiexponential process, but is still meaningful for
NMR spectroscopists since the value allows the discussion
of nuclear relaxation as related to the particular metal ion
(5). When the electron relaxation times are short, solid state
mechanismslike either Raman (6) or Orbach (7) are consid-
ered to be operative (5). In contrast, when such times are

1 To whom correspondence should be addressed.

long, it is considered that modulation of the spin energy
arises from solvent bombardment or molecular rotation (8—
13). In the former case electron relaxation is not magnetic
field dependent for the accessible fields, whereas it is in
the latter. The different behavior essentially depends on the
availability of low lying excited states (4). Along these
lines, NMR spectroscopists can predict and understand nu-
clear relaxation.

Electron relaxation in dimetallic systems experiencing
magnetic exchange coupling has been far less studied. By
referring to the electron correlation time, or to an average
valuewhen S> 1, two limiting cases can be examined. The
case of weak magnetic exchange coupling in heterodimetal-
lic systems (i.e., the coupling energy is much smaller than
the electron relaxation rate of the fast relaxing metal ion) has
been treated as resulting in an additional electronic relaxation
mechanism for the slow relaxing metal ion caused by the
coupling to the fast relaxing metal ion, and accounted for
by using perturbation theory (14—16). The fast relaxing
metal ion was considered to be unaffected by the coupling
(4,17, 18). When magnetic exchange coupling is strong
(i.e., the coupling energy is much larger than the electron
relaxation rate of the fast relaxing metal ion) it had always
been intuitively assumed that the electron relaxation rates
of the two metal ions are the same and equal to the fast
relaxing metal ion. We are now going to calculate the level
lifetimes and total transition linewidths in some strongly
coupled systems in terms of the relaxation times in the iso-
lated ions. Then we calculate the nuclear relaxation of a
nucleus sensing either metal ion at various magnetic fields
and, fromthis, longitudinal (7,) and transverse (7,) effective
electron correlation times for nuclear relaxation. The latter
are the parameters of interest here.

The approach is that of evaluating the transition probabili-
ties between pairs of Mg levels of the S’ manifolds which
originate from magnetic coupling, and their adiabatic line-
widths (19). The overall electron relaxation turns out to
display a multiexponential behavior which is analogous to
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that already encountered in S > 1 single-spin systems (9).
Finally, the appropriate nuclear relaxation rate equations are
calculated as a function of the external magnetic field, by
using the simple Kubo and Tomita formalism for an elec-
tron—nuclear dipolar coupling (14, 17, 20). The calculated
nuclear relaxation profiles can be fitted by assuming that the
profiles are originated by a single electronic transition with
effective electron correlation times 7, and .

This research is of importance to magnetic resonance re-
searchers in that (i) it provides a theoretical explanation of
electron relaxation in the presence of magnetic exchange
coupling, and (ii) it explains in a semiquantitative way why
high resolution NMR can be performed on radicals and cop-
per(l1) compounds in the presence of magnetic coupling
with fast relaxing metal ions like nickel (11) and cobalt(11).

THEORETICAL PART

The calculations have been performed under the condi-
tions that:

(1) Thedimeric system can be described by the Hamilto-
nian

H = gatteSa*Bo + Os1eSs* Bo + JSa - s, [1]

where the first two terms are the Zeeman terms for the two
ions and the last describes an isotropic exchange coupling
interaction between the spin of metal A and that of metal B,
S, and S; respectively. J is the isotropic coupling constant.
(2) The coupling frequency between spins is large in
absolute value compared to the electronic relaxation rates
but small compared to the modulation of the electron lattice

interaction
|[J|/h> 1L, 78

[2]
[3]

| 317 < Tox, Tis,
where 7 = Ry and 74 = Ry are the electron relaxation
rates of uncoupled spins Sy and S respectively, and 7ya,
Tyg ae the corresponding correlation times for electron re-
laxation. The last condition practically means extreme nar-
rowing limit for electron relaxation. Thisis often the condi-
tion encountered for fast relaxing metal ions, which are those
of interest to NMR spectroscopists.

(3) It is further assumed that each electron spin relaxes
with its own mechanisms independently of the occurrence
of spin coupling. Thisis a key assumption, but it is reason-
able within the frame of magnetic exchange coupling being
a perturbation of the overall electronic structure of the un-
coupled spin system. Finaly, we assumed that the stochastic
external fields causing relaxation of the individual ions do
not appreciably correlate between themselves.

(4) The exchange coupling energy is much larger than
the difference in the Zeeman energies. Thereis no theoretical
requirement for this condition. However, as | J| > Zeeman
in most cases of interest, we limit ourselves to this case,
also because the | J| < Zeeman situation would yield results
very similar to the uncoupled system.

J can be either positive or negative, and its absolute value
can be smaller or larger than thermal energy, kT, but should
be specified.

Calculation of Lifetimes and Transition Probabilities

We have considered in the present work the simplest case
when the interactions of stochastic externa fields with indi-
vidual spins are isotropic. Thus, the time-dependent Hamil-
tonian for the interaction between the fluctuating fields and
coupled spins can be written as (19)

H(t) = —1/2y{ S\ i Ha: (1) + Ss-Ha-(1)
+ 28 Hao(1) + S He. (1)

+ sz HBf(t) + ZSBZHBZ(t)]l [4]
where designations +, —, and z are used to distinguish the
spherical components of spin operators S, and S; and ran-
dom field operators H (t) and Hg (t) . Our assumption about
isotropic interaction also includes the conditions

(Ha)a = 1/12(HA,)a = 1/2(HA )a = 1/3(|Hal?)a
(Héz)a\/ = 1/2(Hé+)a\/ = 1/2(Héf)av = 1/3(|HB|2)av-
[5]

It follows (19) that cross terms like (Has)yqHas)p)ay @d
(HaqHgp)a will vanish if p # g. When the fluctuating fields
are not correlated we will aso have (HagHgg)aw = O.

We aim at obtaining the electron relaxation rates in the
coupled systems as a combination of relaxation rates of un-
coupled spins. At this point it is convenient to introduce the
following definitions of the latter (19):

7;1 = 2/3727—v(| HA|2)av

and 75" = 2/3yir,(IHsl?)a. [6]
Only one 7, isused in (6) because this parameter is covariant
with H, and Hg.

The eigenfunctions of the static Hamiltonian [1] allow
us to calculate the matrix elements of the time-dependent
Hamiltonian [ 4] between the | S’"Mg ) of the coupled system.
Then transition probabilities can be calcul ated by the formula
(19)



RELAXATION IN MAGNETIC EXCHANGE COUPLED DIMERS 35

Wi = 2y ([GIHO)]])]%)a fori =+ . [7]
The sum of transtion probabilities from level i to dl other
levels gives the inverse lifetime of level i (7). The W; and
7t values (the latter taken with opposite sign as customary)
are reported as supplementary material (Tables SIA—-S4A) for
the -3, 1-1, 33 and 1-1 cases, respectively.
Then the adiabatic linewidths for each i — j transition can
be calculated according to the formula (21)
(7 )it = r[GH@ D) = GIHO)]1)a- [8]
The corresponding values are a so reported as supplementary
material (Tables SIB—-$4B). Finally, the tota linewidth for
each i — j transition is calculated by making use of the
relationship
()it = i+ V2t + 1Y) (9]
The 7;;* values are reported in supplementary material (Ta
bles SIC-$4C).

Calculation of Paramagnetic Nuclear Relaxation
Enhancements

To derive the equations for the field dependence of the
nuclear relaxation rates enhancements, according to the
Kubo and Tomita treatment (14), we must eval uate expres-
sions of the type

[f:f(r,ﬁ,so)<i|sp(t)|j><j|sq(t)|i>e*wltdt} . [10]

spav

where f(r, ¢, ¢) is afunction which describes the position
of the proton in the laboratory coordinate frame, w, is the
nucleus Larmor frequency, p and q stand for +, z, and —
and i and j are eigenstates of Hamiltonian [1] (20). As the
static Hamiltonian [1] is isotropic, the eigenfrequencies of
the electron spin system do not depend on the orienta-
tion of the molecule. In this case a spherical average of
f(r, 9, ¢) can be taken. The result depends only on the
components of the spherical spin operator tensor. The
expression (i|S,(t)|j) can be taken to be equa to
(i1 §,(0)| jyelt«i"¥7d' where wj is the eigenfrequency of
Hamiltonian [1] (22—24). Omitting constants and before the
spatial average in (10) can be performed, we must evaluate
terms of the type

(1500)] 1) S(0)1i) f Tt g, [11]

where 7. isthe el ectronic relaxation time, taken as the domi-
nant correlation time for the electron—nucleus interaction.

Thereal part of the integral in [11] is equal to the familiar
spectral density

Te
l + (wij + w|)27'§ '

[12]

If the static Hamiltonian is given by [1] only the following
products of expectation values will be different from zero

1SS0S (1)) [13]
(A1S(0) [ jXilS.(D)]]) (14]
(A1S0)] ) S()]1) [15]

Relaxation of the components S, and S_ occurs in the plane
perpendicular to the direction of the static magnetic field.
Therefore, for the spectral density terms originating from
[13] or [14] the 7 coefficients should be given by the corre-
sponding (,);. For the terms originating from [15] two
cases can be considered with respect to .. Wheni = j, then
wij = 0 and 7, coincides with the lifetime of level i, 7.
When i # |, at variance with a monometallic system, the
expectation value (i| S,(0)| j) can be different from zero.
This occurs for the transitions between levels with the same
Mg originating from different S’ multiplets. In such case
the (7,);; of the transition should be used as the correlation
time. The distinction between the above two cases, however,
isirrelevant when J > Zeeman, as al termsinvolving transi-
tions between J-split levels will be dispersed.

In summary, in the equations for nuclear relaxation rate
enhancements all terms related to transitions within the same
S’ multiplet will have the corresponding (7,); as a correla-
tion time. All the so-called w, termswill contain as acorrela-
tion time the lifetime of the corresponding level, ;. The
level to be considered is identified by the indexes of the
zero-valued frequency wj;.

RESULTS

Table 1 collects the total linewidths (7;*) and inverse
level lifetimes (7;*) for the coupled S,—Ss systems 3—3, 2
—1, 3-3, and 1-1, calculated as described under Theoretical
Part.

Because of the same assumptions about fluctuating fields,
the results for the spins Sy, = 3 and S; = 3 coincide with
those of Freeman et al. (19) for two coupled nuclear spins
when external fields are not correlated. For al spin pairs,
the lifetimes of the levels and linewidths of transitions are
expressed as linear combinations of the relaxation rates of
uncoupled spins.

The 7;* and 7 * values of Table 1 constitute the full set
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TABLE 1
Inverse Level Lifetimes, 7;* (Diagonal), and Total Transition Linewidths, 7;* (Off-Diagonal),
in Some Magnetic Exchange Coupled Systems

S=3%=3
‘P1(4) \112(3)
Uy V2R, + U2Rs 3/4R, + 3/4Rs
L2 3/4R, + 3/4Rs 3/4R, + 3/4Rs
Vs 3/4R, + 3/4Rs 3/4R, + 3/4Rs
Ty Ra + Rs 3/4R, + 3/4Rg
S=5%=1
‘I’l(e) ‘1’2(5) \113(4)
Uy U2R, +Rs 2/3R, + 5/3Rs 5/6R, + 4/3Rs
Uys) 2/3R, + 5/3Rs 13/18R, + 17/9Rs 7I9R, + 16/9R,
29N 5/6R, + 4/3Rs 7/9R, + 16/9Rs 13/18R, + 14/9Rs
Uys) 2/3R, + 8/3Rs 13/18R, + 14/9R; 7I9R, + 7/3Rs
T 5/6R, + 7/3Rs 7/9R, + 19/9R; 13/18R, + 20/9Rs
Ty Ra + 3Rs 5/6R, + 7/3Rs 23R, + 8/3Rs
S=3%=3
Uy Yo s Uy
Ty V2R, + 3/2Rs 5/8Ra + 21/8Rs 7/8R, + 57/32Rs 3/4R, + 15/4Rg
Uy, 5/8R, + 21/8Rs 11/16R, + 51/16Rs 13/16R, + 87/32Rs 9/8R, + 15/4R,
Use) 7/8Rs + 57/32Rs 13/16R, + 87/32Rs 11/16R, + 2Rs 3/4R, + 117/32R,
Uys) 3/4R, + 15/4R, 9/8R, + 15/4R, 3/4R, + 117/32Rs 3/4R, + 15/4R,
Usa) 3/4R, + 15/4Rs 9/8R, + 15/4Rs 3/4R, + 117/32Rg 3/4R, + 15/4Rs
Ugs) 5/8R, + 177/32R, 11/16R, + 147/32Rs 13/16R, + 41/16Rs 3/4R, + 117/32Rs
VN 78R, + 39/8Rs 13/16R, + 69/16Rs 11/16R, + 147/32R, 9/8R, + 15/4Rs
gy Ra + 6Rs 7/8R, + 39/8Rs 5/8R, + 177/32Rs 3/4R, + 15/4R,
S =1%=1
\111(9) \1’2(8) \113(7) \1’4(6) Vs
Uy Ra +Rs 3/2R, + 3/2Rs 3/2R, + 3/2Rs 15/8R, + 15/8Rs 2R, + 2R
Uye) 3/2R, + 3/2Rs 714R, + 7/4Rs 7I4R, + T/4Rg 15/8R, + 15/8Rs 2Ry + 2Rs
Tar, 3/2Rs + 3/2Rs 7I4R, + 7/4Rg 714R, + 7/4Rg 15/8R, + 15/8Rs 2R, + 2R
Use) 15/8R, + 15/8Rs 15/8R, + 15/8Rs 15/8R, + 15/8Rs 714R, + 7/4Rs 15/8R, + 15/8Rs
Ty 2R, + 2Rs 2Rs + 2Rs 2R, + 2R 15/8R, + 15/8Rs 2R, + 2R
Ugay 15/8R, + 15/8Rs 15/8R, + 15/8Rs 15/8R, + 15/8Rs 714R, + 7/4Rs 15/8R, + 15/8Rs
Tys) 5/2Ra + 5/2Rs 9/4R, + 9/4Rs 9/4R, + 9/4Rs 15/8R, + 15/8Rs 2R, + 2Rg
gz 5/2R, + 5/2Rs 9/4R, + 9/4Rs 9/4R, + 9/4Rs 15/8R, + 15/8Rs 2R, + 2Rs
Ty 3R + 3Rs 5/2Rs + 5/2Rs 5/2Ra + 5/2Rs 15/8R, + 15/8Rs 2R, + 2R
of correlation times needed in the nuclear relaxation equa- H = geueS- By [16]

tions for the coupled systems developed below.

We now examine the expected NMR properties of dimet-
alic systems experiencing isotropic exchange coupling as
described by Hamiltonian [1] for Sy =3and & = 3, 1, and
3. The Sy, = 1-S = 1 case is also examined.

The nuclear relaxation enhancements caused by dipolar
coupling to an isolated electron spin multiplet, for instance
Si, When the latter is adequately described by the electronic
Zeeman Hamiltonian

are given by the well-known Solomon equation (25). For
the case of electron relaxation being the dominant correlation
time, the equation is

TH(A) = 1—25 KaS(Sh + 1)

T2

T1
X |3 +7
( 1+ w?r?

). )

sl 2
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FIG. 1. Electronic spin energy levels for the dimetallic systems 3—3, 3
-1,3-3 and 1-1.

where the term in parentheses is the sum of two spectra
densities, with 7, equal to the time constant for the relaxation
of the S, component and 7, that of the S, and S_ components
(21). kis given by

po \? yigiul

oo ()
where o is the permeability of vacuum, vy, is the nuclear
magnetogyric ratio, g. is the eectron g factor, u. is the
Bohr magneton, and r, is the nucleus—electron distance.
Analogous equations have been derived when the static el ec-
tronic Hamiltonian contains zero field splitting, g anisotropy,
and hyperfine coupling with the meta nucleus spin
(17, 20, 26, 27). The approach can be that described by
Kubo and Tomita (14) or by Redfield (16). Using the same
approaches, the effect of Hamiltonian [1] can be also intro-
duced. An equation for the S, = 3 and §; = 3 case has been
aready reported (17).

The electronic spin levels for the dimetallic systems con-
sidered here and described by Hamiltonian [1] are sketched
in Fig. 1. In the following, electronic spin levels and transi-
tions will be labeled according to Fig. 1.

The contribution to the enhancement given by each metal
ioninthepair iscalculated separately. If the nucleusinteracts
with both metal ionsthe total effect isthe sum of the effects.

The eguations for the various cases, calculated as described
under Theoretical Part, are reported in the Appendix (Egs.
[A1]-[A6]). The & coefficient in front of all equations is
the same coefficient appearing in Eq. [17], so that the sum
of the F-containing terms, multiplied by afurther coefficient,
can be directly compared with the sum of the spectral densi-
ties appearing in parentheses in Eq. [17].

Equations [A1] —[A6], with the correlation times re-
ported in Table 1, can be used to calculate NMRD profiles.
Prediction of the latter without a theoretical treatment like
the present one appears to be not atrivial task, asthe NMRD
profiles turn out to depend on (i) the relative values of the
electronic relaxation rates of metals A and B when isolated,
R. and Rg; (ii) the identity of the metal (A or B) with
which the nucleus predominantly interacts; (iii) the relative
magnitude of |J| and the thermal energy, kT; and (iv) the
nature (ferro- or antiferro-) of the magnetic coupling be-
tween the two metals, in the case of |J| > KT.

Figure 2 shows the calculated NMRD profilesfor all cases
considered here. With the obvious exception of the 3— and
1-1 cases, for which a strong antiferromagnetic coupling
(J > KT) yields a diamagnetic system, three situations are
considered: the high temperature (HT) limit and the | J| >
KT limits for both J > 0 (AF) and J < O (F). The figure
thus consists of two panels each for the -3 and 1-1 cases
and six panels each for the 3—1 and 3—3 cases. In fact, the
|atter two casesinvolve S, # S;, and two sets of calculations
have been performed for the nucleus, N, interacting with
either one of the two spins. In each panel, three profiles
calculated with the appropriate equations are shown. In all
cases and without loss of generality, the spin interacting with
the nucleus was assumed to have an electronic relaxation
rate R = 10° s™*. The full line refers to the case of the
second spin having a relaxation rate of 10% s *, the dotted
line to the case of the second spin having the same relaxation
rate as the first spin (10° s™*), and the dashed line to the
case of the second spin having a relaxation rate five times
faster than the first spin (5 x 10° s™*). For convenience,
the NMRD profiles are reported as spectral densities, nor-
malized by division by the S(S + 1) vaue of the spin
interacting with the nucleus. In this way, an uncoupled spin
would give the usua low field reference value of 10 and a
spectral density of 3 at field values intermediate between the
wgr and the w,r dispersions (Solomon equation, Eq. [17]
with 7y = 75 = 7).

It appearsthat in all casesthe profilesat low field are lower
than the Solomon profiles. This depends on the reduced
availability of electronic transitions for nuclear relaxation, as
thetransitionsinvolving J-split levels are dispersed. Another
general feature is the higher NMRD profile in the J < 0
(F) case with respect to the J > 0 (AF) case, with the
high temperature limit profile being intermediate. This is
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accounted for intuitively by the larger paramagnetism of the
ground state in the former case.

The dependence of the NMRD intensity, for a nucleus
interacting with one spin, on the electronic relaxation rate
of the other spin is not the same for the various cases. In
genera, the effect is less pronounced when the spin inter-
acting with the nucleus is the larger of the two, and more
pronounced when it is the smaller. The cases of equal spins
are intermediate.

A most striking feature, however, is the variability of the
ratio of the low field to the intermediate field plateaus. Such
ratio is 10/3 in the Solomon case, and would be 10/3 in
the present cases if the 7; and 7;; values were equal. Our
calculations of the individual 7; and 7;; values show that
these values may differ one from another, depending also
on the relative values of Ry and R;.

Furthermore, the two dispersions are (i) not strictly Lo-
rentzian, as they are made up of sums of Lorentzians with
different 7 values, and (ii) not spaced in frequency by the
wslw; ratio, as in the Solomon case when 7, = 7, (Eq.
[17]). However, inspection of the relevant values in Table
1 shows that the 7;; values never differ from one another by
more than a factor of 4, and the same is true for the 7
values. Under these conditions, it is well known that a sum
of Lorentzians is well approximated by a single Lorentzian
having a reciprocal = value equa to the weighted average
of the individual reciprocal = values.

The average effective r values calculated for the low field
and high field dispersions (7, and 74, respectively) from the
individual ;; and 7;; values, respectively, are shown in Table
2. Practically identical values are obtained by actualy fitting
the calculated profiles of Fig. 2 using two effective 7 values
and an effective Solomon equation equal to Eq. [17] but
multiplied by a further C, coefficient. The C, values ob-
tained from the fit are also very close to the values of 3,
2 2 and 3 appearing in Egs. [A1] —[A6] in the cases 3—3,
11, 3-3, and 11, respectively, when the nucleus is inter-
actingwith spin A, inthe HT limit. Likewise, Cg coefficients
very close to the 3, &, £, and 3 values of Egs. [A1] —[A6] are
obtained when the nucleus is interacting with spin B. Analo-
gously, thefitsin the AF and F low temperature limits yield
Ca and C; coefficients very close to those that can be calcu-
lated from Eqgs. [A1] —[A6] in the same limits.

DISCUSSION

The main result of this work is that nuclear relaxation in
coupled systems can always be treated as originating from

asingle electron spin system characterized by a single longi-
tudinal (7,) and transverse (7,) electron relaxation time.
Indeed, each 7:* and 75" value of Table 2 is independent
of whether the nucleus senses metal A or metal B, since
such average values characterize the coupled system as a
whole, as a result of condition [2]. In other words, the two
metal ions have the same average relaxation time. Further-
more, when R, and Rg differ by an order of magnitude or
more, the average value is closer to the larger rather than to
the smaller R value.

When Ry, = Rg, and S, = S = 3, the average 71 * and
75t valuesare, respectively, equal to, and 50% larger than,
the value of the uncoupled system. For S, = S; = 1, both
71t and 75 become larger than that of the uncoupled
system.

For different spins, the relaxation rate of the smaller spin
is multiplied by a factor between 0.5 and 1, and that of the
larger by a factor between 1 and 4. The factors multiplying
Ra and Rg for the calculation of 71" are in any case smaller
than the corresponding factors for the calculation of 75*. In
all cases, the small spin contributes to the average 7;* and
75 values less than the large spin.

Figure 3 shows in graphical form how much the effective
7, and 7, values in the coupled systems differ from the R,
and Rz values in a variety of circumstances. In all cases, it
is assumed that the electron relaxation rate of one spin (R
or Ry) is 10° s™*, and the electron relaxation rate of the
other spin (R, or Rg) varies from 107 to 10™? s™*. The six
panels refer to all the different possibilities for a nucleus to
interact with one of the spin pairs 3—3, 3—1, 3—3, 1-1. The
full linesare calculated in the HT limit, the dotted and dashed
lines in the AF and F limits, respectively. The +* = 10°
stand 7' = Ry (Rg) lines are also shown.

As aready noted, when the R values differ much from
one another, the effective 71* and 75 values are relatively
close to the larger R. However, the detailed behavior is
different. For instance, in the 1-1 case 7,* and 77 are
always larger than the larger R, while in the 3—3 case the
opposite is true, except when R, and Rg are equal or similar
within afactor 3. In the cases of unequal spins, with sizably
different R values, when the larger R value is associated
with the ion with larger S, 7' is sizably larger than the
larger value. On the contrary, if the larger R value is associ-
ated with theion with smaller S, 7 ~* is close to, but slightly
smaller than, R.

In summary, Table 2 allows experimentaliststo fit NMRD
data of coupled systems by using the Ry and Rg values of

FIG. 2.
3

1
272
5

spins.

NMRD profiles (spectral densities, normalized to 10 for the Solomon case, as a function of the proton Larmor frequency) for the 3—3, 3—1,
and 1-1 systems. In each system, the HT, F, and AF limits are considered (see text) for Rs < Ry (Rs = 10% s7%, solid line), Rs = Ra (Rs = 10°
1, dotted line), and Rz > R, (Rs = 5 X 10° s, dashed line). Calculations are performed for the nucleus, N, interacting with either one of the two
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TABLE 2
Effective Electron Relaxation Rates for J-Coupled Systems (3-3; 3-1; 3-3; and 1-1) in the HT, AT, and F Limits®

N-S N-S
HT AF F HT AF F
$=2%-3
1t U2R, + V2R Diamagnetic state  1/2R, + 1/2Rs V2R, + 12Rs Diamagnetic state  1/2R, + 1/2Rs
721 3/4R. + 3/4Rg 3/4R, + 3/4Rg 3/4R, + 3/4Rg 3/AR, + 3/4Rg
S=2%=1

71t 107/198R, + 112/99R;  13/18R, + 14/9Rs  47/90R, + 49/45Rg

73/126R, + 77/63Rs 13/18Rs + 14/9Rs  47/90R, + 49/45Rs

T2t TU99R, + 187/99Rs TI9RA + 7/3Rs 32/45R, + 83/45Rs  46/63R, + 125/63Rs 7I9RA + 7/3Rg 32/45R, + 83/45Rs
$=3%=3
71t 9/16R. + 179/96Rg 11/16R, + 2Rs 43/80R, + 147/80Rs  331/560R, + 2123/1120Rs  11/16R, + 2Rs 43/80R, + 147/80Rs

T3 43/48R, + 215/64Rs 3/4R, + 117/32Rs  37/40R, + 33/10Rs

69/80R, + 7677/2240Rs 3/4R, + 117/32Rs  37/40R, + 33/10Rs

S=1&%=1

711 5/4R. + 5/4Rs
721 TR, + T/4Re

Diamagnetic state  23/20R, + 23/20Rs

69/40R, + 69/40Rs

5/4R, + 5/4Rs
7I4Rs + 7/4Rg

Diamagnetic state  23/20R, + 23/20Rs

69/40R, + 69/40Rg

& Calculations are performed for the nucleus, N, interacting with either one of the two spins.

the uncoupled systems as the only unknowns. Of course,
this only holds in the starting assumption that no additional
relaxation mechanisms are operative in the coupled systems.
711 and 75 larger than predicted should reveal the presence
of additional relaxation mechanisms.

Experimental data on 7, are available for a copper dimer
in Cu,Cu, superoxide dismutase (28) where J = 26 cm™
(29), as well as for the native Cu,Zn, superoxide dismutase
system (28). Assuming Ry = Rg, no change in =, should
be expected, while afactor two decreasein nuclear relaxation
should be observed due to the 3 coefficient in Eq. [A1]. The
T, values have been estimated with a modified Solomon
equation that takes into account the effect of the coupling
of the unpaired electron of copper with the copper | = 3
nucleus (20, 26), as well as the possible effects of zero field
splitting (ZFS) for S> 3 ions (20, 23). The 7, values actu-
aly increase from about 3 to 4 ns on passing from the
uncoupled to the coupled system, while the best fit value of
the coefficient is 0.57 (28). Both parameters are thus in
substantially good agreement with the expectations. r, val-
ues cannot be obtained from NMRD measurements in this
case because the low field inflections of the NMRD profiles
are determined by the value of the hyperfine coupling be-

tween the unpaired electron on copper and the copper | =
2 nucleus. However, it iswell known that in other copper (11)
dimersthe EPR linewidths are larger than in the correspond-
ing uncoupled systems (30). The present prediction of a
50% increase in linewidth is in agreement with these obser-
vations. Finaly, in several copper—copper dimers relatively
sharp 'H NMR lines are observed (31-34). It has been
suggested that the such sharp lines arise from a sizable short-
ening of the electronic relaxation times of the copper ions
with respect to the uncoupled situation (33, 34), beyond that
predicted from the present treatment. In these cases, usually
characterized by relatively short metal—metal distances,
modulation of ZFS of the dimer S' = 1 state may be an
additional electronic relaxation mechanism (34).
Experimental data on 7, are also available for the Cu,Co,
derivative of superoxide dismutase, which displaysa J value
of 17 cm™* (35). The NMR data, collected over a range of
magnetic fields from 60 to 400 MHz, refer to protein protons
sensing either the copper or the cobalt ion (36). The Rg,
and R, data obtained on suitable uncoupled derivatives are
5 x 10% and 1 x 10 s7*, respectively (36). This is thus
atypical case of oneion relaxing much faster than the other
ion. From Table 2, in the high temperature approximation,

FIG. 3. Effective correlation rates for nuclear relaxation, 75" and 71*, as a function of the electron relaxation rate of one spin, that of the other spin
being equal to 10° s™*. The electron relaxation rate of the spin interacting with the nucleus is labeled R,, while that of the second spin is labeled Rs.
Solid, dotted, and dashed lines refer to the HT, AF, and F limits, respectively (see text). Calculations are performed for the nucleus, N, interacting with

either one of the two spins.
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71+ should be equal to % Ro, + 32 R, i.€., about twice
Reo, O 2 X 10* s7*. The experimental 7:* value ranges
between 1 and 2 x 10™ s~ depending on whether it is
estimated from the relaxation properties of the protons close
to the copper or to the cobalt ion. Again, the agreement with
prediction is very good. In particular, the more than two
orders of magnitude decrease in the electron relaxation time
of copper, and even the factor two decrease in the electron
relaxation time of cobalt, are observed as predicted.

CONCLUDING REMARKS

The perception that the electronic relaxation times of un-
coupled metal ions change upon magnetic coupling is here
put on quantitative basis for some idealized cases. The pres-
ence of ZFS has not been taken into consideration because
of the loss of generadlity, in that information on ZFS rarely
is available. If ZFS parameters are known, then it is easy to
include them in the calculations within the present frame
(20). While a perturbative approach was available for weak
coupling (4), no attempt is available in the literature to
relate the electronic relaxation times of a single ion with
that of the same ion in a strongly magnetic coupled dimer.
Here we have calculated the transition probabilities between
levels arising from magnetic coupling and the indetermina-
tion of the transitions. Many correlation times are thus ob-
tained, which can be of little help to spectroscopists. Since
we are interested particularly in the effects on nuclei which
are coupled with electrons in magnetic coupled systems, we
have calculated the nuclear relaxation rates at any magnetic
field. Then, from the latter calculated values we have ex-
tracted a pair of effective electronic correlation times which
are the ones NMR spectroscopists want. In thisway asimple
equation similar to the well-known Solomon equation can
be used for dimetallic systems.

A final remark isthat it is possible that establishing mag-
netic coupling provides further electron relaxation mecha-
nisms, and that the average 7, and 7, values are much smaller
than those reported in Table 2. However, the consequences
on nuclear relaxation for nuclei interacting with the A or B
spins, given in Egs. [Al] —[A6], are still fully valid.

APPENDIX

Equations for Nuclear Relaxation in Some Magnetic
Exchange Coupled Systems

The following equations are generally valid under condi-
tions[1] —[ 4] described under Theoretica Part. In the equa-
tions, 7;;* represents the total linewidth (in radians per sec-
ond) of the transition between levelsi and j in the coupled
system, whereas 7;; represents the lifetime of level i. The
7 and 7;* values are reported in Table 1 for the various

cases. The labeling of electron spin levels and transitions is
showninFig. 1. The /(1 + wf775) dispersions correspond-
ing to transitions between electronic levels split by J are
omitted because they are quenched in the chosen limit | J|/
ho> it

Si=radS =3

Tw(A) = Tui(B)
2
T Kae)Sa(Sa + 1)

4Fle7 E, /KT
Se (25 + 1)e &/KT”

x% [A1]

where

_ 3 T11 3 Taa
Fi=3 22 T 5 2_2
21+ W Tnin 21+(U|7'44
7 T13 7 T34
+t3 2 2 5 2 2 1
21+ w137 13 21 + W3aT 34

and Eg refers to the energy of the spin state S'. All four
spectral densitiesin F; are multiplied by the same exponen-
tial, as the individual Zeeman energy contribution can be
neglected in accordance with the condition that the exchange
coupling energy |J| is much larger than the difference in
the Zeeman energies. Note that the nuclear relaxation en-
hancements caused by the two metal ions are identical under
any condition, even when the two meta ions are markedly
different and have very different electronic relaxation times
when isolated. This equation reduces to the equation pre-
viously proposed (17) for 793 = 734 = 711 = Tas = T.

Ss=zandS =1

2
-1 _
Twi(A) = 15 KaSa (S + 1)

11 [G(Fﬁ‘,ze‘Ew’” + F4 e 5/T)

, [A2
27 S¢ (25 + 1)e &/ } [A2]

where

i T 33(44) 7
111 + W?T%3(44)

T34

F/f/z = A
111 + wirs
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and EA _ T11(88) 1 T 22(77)
2 = 22 Py 2 2
1+ witiiesy 21+ wiTim
FA  — 27 T 11(66) 3 T 22(55) 7 7
32 =T st - -
111 + w|27'%1(66) 111 + LU|2T%2(55) — 872 5 + — 2:; >
6 1 + wWgrT g7 6 l + wWaTon
21 T12 21 Ts6
11 2 2 11 2 2 7 Ts52 7 T75
111+ W12T 12 111+ WseT 56 - > > + = > >
4 1 + Ws2T 52 4 1 + W7sT 75
n 28 Tos

111 + w3
and
F%, and F3%, refer to the spectral densities originating from
the S’ = % or 3, respectively. The ground state can be either 5
the E,/, or the E;/, level according to whether J > 0 (antifer- Tw(B) = —keSs(S + 1)
romagnetic coupling) or J < 0 (ferromagnetic coupling). 15

7 8(F?87E1IKT 4 FgeszlkT)
2 Xg ’ —Eg /KT . [A3]
Tw(B) =ckeS(S+1) 8| 3¢ (28 + 1)e 5
o 7| B(FEae =T+ FEizEe*IkETS/Z’kT) | [A3] Where
9 > (28 +1)e™ s
where = 15 Ta3(e6) S5  Ta
141+W|2T%3(65) 41+w;2137‘4213
6 T T
Fe_ -2 33(44) " 4 5 -
T+ witham 1+ whrh

41+ w33,

and 54 Tiiss 2_7 T22(77)

Fg =22 Tz
351+ w|27'§1(83) 701 + LU|2T52(77)
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2
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